############################################################################# # Documentation # ############################################################################# # Author: Todd Whiteman # Date: 7th May, 2003 # Verion: 1.1 # Homepage: http://home.pacific.net.au/~twhitema/des.html # # This algorithm is a pure python implementation of the DES algorithm. # It is in pure python to avoid portability issues, since most DES # implementations are programmed in C (for performance reasons). # # Triple DES class is also implemented, utilising the DES base. Triple DES # is either DES-EDE3 with a 24 byte key, or DES-EDE2 with a 16 byte key. # # See the README.txt that should come with this python module for the # implementation methods used. """A pure python implementation of the DES and TRIPLE DES encryption algorithms pyDes.des(key, [mode], [IV]) pyDes.triple_des(key, [mode], [IV]) key -> String containing the encryption key. 8 bytes for DES, 16 or 24 bytes for Triple DES mode -> Optional argument for encryption type, can be either pyDes.ECB (Electronic Code Book) or pyDes.CBC (Cypher Block Chaining) IV -> Optional argument, must be supplied if using CBC mode. Must be 8 bytes Example: from pyDes import * data = "Please encrypt my string" k = des("DESCRYPT", " ", CBC, "\0\0\0\0\0\0\0\0") d = k.encrypt(data) print "Encypted string: " + d print "Decypted string: " + k.decrypt(d) See the module source (pyDes.py) for more examples of use. You can slo run the pyDes.py file without and arguments to see a simple test. Note: This code was not written for high-end systems needing a fast implementation, but rather a handy portable solution with small usage. """ # Modes of crypting / cyphering ECB = 0 CBC = 1 ############################################################################# # DES # ############################################################################# class des: """DES encryption/decrytpion class Supports ECB (Electronic Code Book) and CBC (Cypher Block Chaining) modes. pyDes.des(key,[mode], [IV]) key -> The encryption key string, must be exactly 8 bytes mode -> Optional argument for encryption type, can be either pyDes.ECB (Electronic Code Book), pyDes.CBC (Cypher Block Chaining) IV -> Optional string argument, must be supplied if using CBC mode. Must be 8 bytes in length. """ # Permutation and translation tables for DES __pc1 = [56, 48, 40, 32, 24, 16, 8, 0, 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35, 62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 60, 52, 44, 36, 28, 20, 12, 4, 27, 19, 11, 3 ] # number left rotations of pc1 __left_rotations = [ 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 ] # permuted choice key (table 2) __pc2 = [ 13, 16, 10, 23, 0, 4, 2, 27, 14, 5, 20, 9, 22, 18, 11, 3, 25, 7, 15, 6, 26, 19, 12, 1, 40, 51, 30, 36, 46, 54, 29, 39, 50, 44, 32, 47, 43, 48, 38, 55, 33, 52, 45, 41, 49, 35, 28, 31 ] # initial permutation IP __ip = [57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7, 56, 48, 40, 32, 24, 16, 8, 0, 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, 62, 54, 46, 38, 30, 22, 14, 6 ] # Expansion table for turning 32 bit blocks into 48 bits __expansion_table = [ 31, 0, 1, 2, 3, 4, 3, 4, 5, 6, 7, 8, 7, 8, 9, 10, 11, 12, 11, 12, 13, 14, 15, 16, 15, 16, 17, 18, 19, 20, 19, 20, 21, 22, 23, 24, 23, 24, 25, 26, 27, 28, 27, 28, 29, 30, 31, 0 ] # The (in)famous S-boxes __sbox = [ # S1 [14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8, 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0, 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13], # S2 [15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5, 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15, 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9], # S3 [10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1, 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7, 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12], # S4 [7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9, 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4, 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14], # S5 [2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6, 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14, 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3], # S6 [12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8, 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6, 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13], # S7 [4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6, 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2, 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12], # S8 [13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2, 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8, 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11], ] # 32-bit permutation function P used on the output of the S-boxes __p = [ 15, 6, 19, 20, 28, 11, 27, 16, 0, 14, 22, 25, 4, 17, 30, 9, 1, 7, 23,13, 31, 26, 2, 8, 18, 12, 29, 5, 21, 10, 3, 24 ] # final permutation IP^-1 __fp = [ 39, 7, 47, 15, 55, 23, 63, 31, 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29, 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27, 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25, 32, 0, 40, 8, 48, 16, 56, 24 ] # Type of crypting being done ENCRYPT = 0x00 DECRYPT = 0x01 # Initialisation def __init__(self, key, mode=ECB, IV=None): if len(key) != 8: raise ValueError("Invalid DES key size. Key must be exactly 8 bytes long.") self.block_size = 8 self.key_size = 8 self.__padding = '' # Set the passed in variables self.setMode(mode) if IV: self.setIV(IV) self.L = [] self.R = [] self.Kn = [ [0] * 48 ] * 16 # 16 48-bit keys (K1 - K16) self.final = [] self.setKey(key) def getKey(self): """getKey() -> string""" return self.__key def setKey(self, key): """Will set the crypting key for this object. Must be 8 bytes.""" self.__key = key self.__create_sub_keys() def getMode(self): """getMode() -> pyDes.ECB or pyDes.CBC""" return self.__mode def setMode(self, mode): """Sets the type of crypting mode, pyDes.ECB or pyDes.CBC""" self.__mode = mode def getIV(self): """getIV() -> string""" return self.__iv def setIV(self, IV): """Will set the Initial Value, used in conjunction with CBC mode""" if not IV or len(IV) != self.block_size: raise ValueError("Invalid Initial Value (IV), must be a multiple of " + str(self.block_size) + " bytes") self.__iv = IV def getPadding(self): """getPadding() -> string of length 1. Padding character.""" return self.__padding def __String_to_BitList(self, data): """Turn the string data, into a list of bits (1, 0)'s""" l = len(data) * 8 result = [0] * l pos = 0 for c in data: i = 7 ch = ord(c) while i >= 0: if ch & (1 << i) != 0: result[pos] = 1 else: result[pos] = 0 pos += 1 i -= 1 return result def __BitList_to_String(self, data): """Turn the list of bits -> data, into a string""" result = '' pos = 0 c = 0 while pos < len(data): c += data[pos] << (7 - (pos % 8)) if (pos % 8) == 7: result += chr(c) c = 0 pos += 1 return result def __permutate(self, table, block): """Permutate this block with the specified table""" return map(lambda x: block[x], table) # Transform the secret key, so that it is ready for data processing # Create the 16 subkeys, K[1] - K[16] def __create_sub_keys(self): """Create the 16 subkeys K[1] to K[16] from the given key""" key = self.__permutate(des.__pc1, self.__String_to_BitList(self.getKey())) i = 0 # Split into Left and Right sections self.L = key[:28] self.R = key[28:] while i < 16: j = 0 # Perform circular left shifts while j < des.__left_rotations[i]: self.L.append(self.L[0]) del self.L[0] self.R.append(self.R[0]) del self.R[0] j += 1 # Create one of the 16 subkeys through pc2 permutation self.Kn[i] = self.__permutate(des.__pc2, self.L + self.R) i += 1 # Main part of the encryption algorithm, the number cruncher :) def __des_crypt(self, block, crypt_type): """Crypt the block of data through DES bit-manipulation""" block = self.__permutate(des.__ip, block) self.L = block[:32] self.R = block[32:] # Encryption starts from Kn[1] through to Kn[16] if crypt_type == des.ENCRYPT: iteration = 0 iteration_adjustment = 1 # Decryption starts from Kn[16] down to Kn[1] else: iteration = 15 iteration_adjustment = -1 i = 0 while i < 16: # Make a copy of R[i-1], this will later become L[i] tempR = self.R[:] # Permutate R[i - 1] to start creating R[i] self.R = self.__permutate(des.__expansion_table, self.R) # Exclusive or R[i - 1] with K[i], create B[1] to B[8] whilst here self.R = map(lambda x, y: x ^ y, self.R, self.Kn[iteration]) B = [self.R[:6], self.R[6:12], self.R[12:18], self.R[18:24], self.R[24:30], self.R[30:36], self.R[36:42], self.R[42:]] # Optimization: Replaced below commented code with above #j = 0 #B = [] #while j < len(self.R): # self.R[j] = self.R[j] ^ self.Kn[iteration][j] # j += 1 # if j % 6 == 0: # B.append(self.R[j-6:j]) # Permutate B[1] to B[8] using the S-Boxes j = 0 Bn = [0] * 32 pos = 0 while j < 8: # Work out the offsets m = (B[j][0] << 1) + B[j][5] n = (B[j][1] << 3) + (B[j][2] << 2) + (B[j][3] << 1) + B[j][4] # Find the permutation value v = des.__sbox[j][(m << 4) + n] # Turn value into bits, add it to result: Bn Bn[pos] = (v & 8) >> 3 Bn[pos + 1] = (v & 4) >> 2 Bn[pos + 2] = (v & 2) >> 1 Bn[pos + 3] = v & 1 pos += 4 j += 1 # Permutate the concatination of B[1] to B[8] (Bn) self.R = self.__permutate(des.__p, Bn) # Xor with L[i - 1] self.R = map(lambda x, y: x ^ y, self.R, self.L) # Optimization: This now replaces the below commented code #j = 0 #while j < len(self.R): # self.R[j] = self.R[j] ^ self.L[j] # j += 1 # L[i] becomes R[i - 1] self.L = tempR i += 1 iteration += iteration_adjustment # Final permutation of R[16]L[16] self.final = self.__permutate(des.__fp, self.R + self.L) return self.final # Data to be encrypted/decrypted def crypt(self, data, crypt_type): """Crypt the data in blocks, running it through des_crypt()""" # Error check the data if not data: return '' if len(data) % self.block_size != 0: if crypt_type == des.DECRYPT: # Decryption must work on 8 byte blocks raise ValueError("Invalid data length, data must be a multiple of " + str(self.block_size) + " bytes\n.") if not self.getPadding(): raise ValueError("Invalid data length, data must be a multiple of " + str(self.block_size) + " bytes\n. Try setting the optional padding character") else: data += (self.block_size - (len(data) % self.block_size)) * self.getPadding() # print "Len of data: %f" % (len(data) / self.block_size) if self.getMode() == CBC: if self.getIV(): iv = self.__String_to_BitList(self.getIV()) else: raise ValueError("For CBC mode, you must supply the Initial Value (IV) for ciphering") # Split the data into blocks, crypting each one seperately i = 0 dict = {} result = [] #cached = 0 #lines = 0 while i < len(data): # Test code for caching encryption results #lines += 1 #if dict.has_key(data[i:i+8]): #print "Cached result for: %s" % data[i:i+8] # cached += 1 # result.append(dict[data[i:i+8]]) # i += 8 # continue block = self.__String_to_BitList(data[i:i+8]) # Xor with IV if using CBC mode if self.getMode() == CBC: if crypt_type == des.ENCRYPT: block = map(lambda x, y: x ^ y, block, iv) #j = 0 #while j < len(block): # block[j] = block[j] ^ iv[j] # j += 1 processed_block = self.__des_crypt(block, crypt_type) if crypt_type == des.DECRYPT: processed_block = map(lambda x, y: x ^ y, processed_block, iv) #j = 0 #while j < len(processed_block): # processed_block[j] = processed_block[j] ^ iv[j] # j += 1 iv = block else: iv = processed_block else: processed_block = self.__des_crypt(block, crypt_type) # Add the resulting crypted block to our list #d = self.__BitList_to_String(processed_block) #result.append(d) result.append(self.__BitList_to_String(processed_block)) #dict[data[i:i+8]] = d i += 8 # print "Lines: %d, cached: %d" % (lines, cached) # Remove the padding from the last block if crypt_type == des.DECRYPT and self.getPadding(): #print "Removing decrypt pad" s = result[-1] while s[-1] == self.getPadding(): s = s[:-1] result[-1] = s # Return the full crypted string return ''.join(result) def encrypt(self, data, pad=''): """encrypt(data, [pad]) -> string data : String to be encrypted pad : Optional argument for encryption padding. Must only be one byte The data must be a multiple of 8 bytes and will be encrypted with the already specified key. Data does not have to be a multiple of 8 bytes if the padding character is supplied, the data will then be padded to a multiple of 8 bytes with this pad character. """ self.__padding = pad return self.crypt(data, des.ENCRYPT) def decrypt(self, data, pad=''): """decrypt(data, [pad]) -> string data : String to be encrypted pad : Optional argument for decryption padding. Must only be one byte The data must be a multiple of 8 bytes and will be decrypted with the already specified key. If the optional padding character is supplied, then the un-encypted data will have the padding characters removed from the end of the string. This pad removal only occurs on the last 8 bytes of the data (last data block). """ self.__padding = pad return self.crypt(data, des.DECRYPT) ############################################################################# # Triple DES # ############################################################################# class triple_des: """Triple DES encryption/decrytpion class This algorithm uses the DES-EDE3 (when a 24 byte key is supplied) or the DES-EDE2 (when a 16 byte key is supplied) encryption methods. Supports ECB (Electronic Code Book) and CBC (Cypher Block Chaining) modes. pyDes.des(key, [mode], [IV]) key -> The encryption key string, must be either 16 or 24 bytes long mode -> Optional argument for encryption type, can be either pyDes.ECB (Electronic Code Book), pyDes.CBC (Cypher Block Chaining) IV -> Optional string argument, must be supplied if using CBC mode. Must be 8 bytes in length. """ def __init__(self, key, mode=ECB, IV=None): self.block_size = 8 self.setMode(mode) self.__padding = '' self.__iv = IV self.setKey(key) def getKey(self): """getKey() -> string""" return self.__key def setKey(self, key): """Will set the crypting key for this object. Either 16 or 24 bytes long.""" self.key_size = 24 # Use DES-EDE3 mode if len(key) != self.key_size: if len(key) == 16: # Use DES-EDE2 mode self.key_size = 16 else: raise ValueError("Invalid triple DES key size. Key must be either 16 or 24 bytes long") if self.getMode() == CBC and (not self.getIV() or len(self.getIV()) != self.block_size): raise ValueError("Invalid IV, must be 16 bytes in length") ## TODO: Check this self.__key1 = des(key[:8], self.getMode(), self.getIV()) self.__key2 = des(key[8:16], self.getMode(), self.getIV()) if self.key_size == 16: self.__key3 = self.__key1 else: self.__key3 = des(key[16:], self.getMode(), self.getIV()) self.__key = key def getMode(self): """getMode() -> pyDes.ECB or pyDes.CBC""" return self.__mode def setMode(self, mode): """Sets the type of crypting mode, pyDes.ECB or pyDes.CBC""" self.__mode = mode def getIV(self): """getIV() -> string""" self.__iv def setIV(self, IV): """Will set the Initial Value, used in conjunction with CBC mode""" self.__iv = IV def encrypt(self, data, pad=''): """encrypt(data, [pad]) -> string data : String to be encrypted pad : Optional argument for encryption padding. Must only be one byte The data must be a multiple of 8 bytes and will be encrypted with the already specified key. Data does not have to be a multiple of 8 bytes if the padding character is supplied, the data will then be padded to a multiple of 8 bytes with this pad character. """ data = self.__key1.encrypt(data, pad) data = self.__key2.decrypt(data) return self.__key3.encrypt(data) def decrypt(self, data, pad=''): """decrypt(data, [pad]) -> string data : String to be encrypted pad : Optional argument for decryption padding. Must only be one byte The data must be a multiple of 8 bytes and will be decrypted with the already specified key. If the optional padding character is supplied, then the un-encypted data will have the padding characters removed from the end of the string. This pad removal only occurs on the last 8 bytes of the data (last data block). """ data = self.__key3.decrypt(data) data = self.__key2.encrypt(data) return self.__key1.decrypt(data, pad) ############################################################################# # Examples # ############################################################################# def example_triple_des(): from time import time # Utility module from binascii import unhexlify as unhex # example shows triple-des encryption using the des class print "Example of triple DES encryption in default ECB mode (DES-EDE3)\n" print "Triple des using the des class (3 times)" t = time() k1 = des(unhex("133457799BBCDFF1")) k2 = des(unhex("1122334455667788")) k3 = des(unhex("77661100DD223311")) d = "Triple DES test string, to be encrypted and decrypted..." print "Key1: %s" % k1.getKey() print "Key2: %s" % k2.getKey() print "Key3: %s" % k3.getKey() print "Data: %s" % d e1 = k1.encrypt(d) e2 = k2.decrypt(e1) e3 = k3.encrypt(e2) print "Encrypted: " + e3 d3 = k3.decrypt(e3) d2 = k2.encrypt(d3) d1 = k1.decrypt(d2) print "Decrypted: " + d1 print "DES time taken: %f (%d crypt operations)" % (time() - t, 6 * (len(d) / 8)) print "" # Example below uses the triple-des class to achieve the same as above print "Now using triple des class" t = time() t1 = triple_des(unhex("133457799BBCDFF1112233445566778877661100DD223311")) print "Key: %s" % t1.getKey() print "Data: %s" % d td1 = t1.encrypt(d) print "Encrypted: " + td1 td2 = t1.decrypt(td1) print "Decrypted: " + td2 print "Triple DES time taken: %f (%d crypt operations)" % (time() - t, 6 * (len(d) / 8)) def example_des(): from time import time # example of DES encrypting in CBC mode with the IV of "\0\0\0\0\0\0\0\0" print "Example of DES encryption using CBC mode\n" t = time() k = des("DESCRYPT", CBC, "\0\0\0\0\0\0\0\0") data = "DES encryption algorithm" print "Key : " + k.getKey() print "Data : " + data d = k.encrypt(data) print "Encrypted: " + d d = k.decrypt(d) print "Decrypted: " + d print "DES time taken: %f (6 crypt operations)" % (time() - t) print "" def __test__(): example_des() example_triple_des() def __fulltest__(): # This should not produce any unexpected errors or exceptions from binascii import unhexlify as unhex from binascii import hexlify as dohex __test__() print "" k = des("\0\0\0\0\0\0\0\0", CBC, "\0\0\0\0\0\0\0\0") d = k.encrypt("DES encryption algorithm") if k.decrypt(d) != "DES encryption algorithm": print "Test 1 Error: Unencypted data block does not match start data" k = des("\0\0\0\0\0\0\0\0", CBC, "\0\0\0\0\0\0\0\0") d = k.encrypt("Default string of text", '*') if k.decrypt(d, "*") != "Default string of text": print "Test 2 Error: Unencypted data block does not match start data" k = des("\r\n\tABC\r\n") d = k.encrypt("String to Pad", '*') if k.decrypt(d) != "String to Pad***": print "'%s'" % k.decrypt(d) print "Test 3 Error: Unencypted data block does not match start data" k = des("\r\n\tABC\r\n") d = k.encrypt(unhex("000102030405060708FF8FDCB04080"), unhex("44")) if k.decrypt(d, unhex("44")) != unhex("000102030405060708FF8FDCB04080"): print "Test 4a Error: Unencypted data block does not match start data" if k.decrypt(d) != unhex("000102030405060708FF8FDCB0408044"): print "Test 4b Error: Unencypted data block does not match start data" k = triple_des("MyDesKey\r\n\tABC\r\n0987*543") d = k.encrypt(unhex("000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080")) if k.decrypt(d) != unhex("000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080"): print "Test 5 Error: Unencypted data block does not match start data" k = triple_des("\r\n\tABC\r\n0987*543") d = k.encrypt(unhex("000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080")) if k.decrypt(d) != unhex("000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080"): print "Test 6 Error: Unencypted data block does not match start data" def __filetest__(): from time import time f = open("pyDes.py", "rb+") d = f.read() f.close() t = time() k = des("MyDESKey") d = k.encrypt(d, " ") f = open("pyDes.py.enc", "wb+") f.write(d) f.close() d = k.decrypt(d, " ") f = open("pyDes.py.dec", "wb+") f.write(d) f.close() print "DES file test time: %f" % (time() - t) def __profile__(): import profile profile.run('__fulltest__()') #profile.run('__filetest__()') if __name__ == '__main__': __test__() #__fulltest__() #__filetest__() #__profile__()